THE CLOUD CONNECTIVITY COMPANY

'S Kong

Modern APl Management
With Kong

Using Kong's Service Connectivity Platform to fully automate the API
lifecycle in any environment

N/

X
(2 5.]
57

7

\
N
\J
J/
/
y | SE——
/
/ JES—
/
—
|

o4
@

Business Summary

API management has become exponentially more important in the last few years. This has
increased the need to select a modern APl management solution that can run across any
cloud or deployment environment, allowing the decentralization of API deployments within an
organization and providing the appropriate level of control and governance from a central IT
perspective.

When a multi-cloud and multi-line business solution is used correctly, it helps reduce the total
cost of ownership of API platforms at the organizational level as well as improving developer
productivity and time to market. This allows an organization to capture business value by
innovating and iterating faster, rather than spending a disproportionate amount of capital and
time focusing on IT governance. A truly modern platform will allow consistency to be applied
across an entire API portfolio, regardless of where the APIs are hosted.

Technical Summary

The move to ever smaller deployment units (e.g., containers and serverless functions) and ever
more automated ways of testing, deploying and managing them (e.g., CI/CD pipelines and
Kubernetes) has increased the complexity of a typical application landscape manyfold. To
counter the complexity of ever more decentralized business logic, centralizing common
functionality and policy is essential to reducing the overhead of security and governance that
exists for every deployment unit, as well as to increase the speed of developing new features
and functionality.

At the same time, this centralization should not happen somewhere far away from where the
implementations are running. Be it on virtual machines, containers or even bare metal, API
management should sit right next to the implementations to increase performance, reduce
latency, and support the same deployment processes and tooling.

Many organizations are adopting Kong as the modern APl management solution in a fully
automated, cloud-agnostic world — gaining significant benefits in time to market and overall
cost of ownership of their API deployments whilst benefiting from a horizontally scalable and
extensible platform. This paper will explain how and why.

Addressing Business Challenges

Time to Market and Developer Productivity

Modern API approaches need to be customer-focused and transform IT into an enabler for the
business. One of the major benefits of using an API gateway is to apply cross-cutting concerns
to APIs and microservices rather than bottlenecking development by manually coding logic
into each individual service. Coupled with a design-first approach to reduce time spent in
development cycles, API platforms are a core technology component needed to accelerate
time to market, as well as secure and govern APIs and services.

As API adoption has matured, these productivity gains have hit a new limiting factor due to the
significant increase in the number of APIs and distributed nature of their deployment. This
leads to a degradation of efficiency as developers and APl owners apply these practices at
scale. Without driving the end-to-end API lifecycle declaratively, continuous integration cannot
be fully continuous, causing manual effort to deploy APIs and decide which policies should be
applied to which endpoints. It can also lead to drift between the API specs and the
corresponding APl implementations as changes are made. The cost of this human-driven
approach to the API lifecycle will increase with the number of APIs and the rate of change of
each, creating new bottlenecks that decelerate the overall time to market.

TCO and ROl

Modern API platforms nearly always span multiple deployment platforms and technologies. It
is rare for a large enterprise to only use a single cloud provider, as it is rare to find an
organization that has fully migrated away from its legacy technologies. This means for there to
be a single logical approach to an API platform, the software must be able to run on any
deployment target, be it on different cloud providers, containers or even on-premise
bare-metal. As this proliferation of API management occurs as a company grows its API
economy, it leads to four main factors driving up the overall cost of the platform:
1. The cost of compute to manage a larger estate and the traffic following through it
2. Operational complexity that arises by having different approaches for different
deployment targets — both in terms of the skill sets required to support the disparate
technology and also in the context of duplicating functionality so that a piece of logic
can be executed on different runtime targets

. Architectural complexity — by not having a standard blueprint across all deployment

platforms, the risk of instability through operator error greatly rises
Lack of flexibility in deployment options, extensibility and scalability that slow down
innovation

Digital Transformation

Digital transformation is underpinned by three core pillars: people, process and technology. A
well thought out API platform approach touches all three of these core tenants.

1.

People - Digital transformation is the shift from IT as the bottleneck to IT as the
enabler. The only way IT teams can stay in lockstep and even anticipate business needs
is by shifting to a culture of re-use and self-service, and to a governance model more
focused on decentralized empowerment than centralized enforcement. This means
supporting the varying needs of the key API personas in the full API lifecycle across
federated groups operating at different paces, whilst supporting a developer ecosystem
in which internal and external APlIs are treated as products and services.

Process — Digital transformation requires the adoption of different approaches from
traditional software development, such as DevOps and agile delivery. This means
modern platforms must have excellent support for DevOps tooling, must expose
easy-to-use interfaces to integrate into automated code delivery pipelines and must
support being treated as immutable infrastructure in small units of compute that can be
easily destroyed or scaled.

Technology — Most businesses are now moving away from selecting a single
technology partner to an approach of selecting best-in-class technology vendors that
are suitable for all use cases. It is therefore critical that each vendor supports seamless,
standards-based integration with the other solutions to co-exist, rather than attempt to
force proprietary sub-optimal solutions. Common use cases for this approach are
ensuring that an organization has a single pane of glass for observability across its
entire estate, and also that open data and standards are adhered to.

Why Are Enterprises Transforming With Kong?

Business

Developer Productivity and Time to
Market

With the abstraction of policy concerns,
developers can focus on business logic
when developing new functionality, while
standardization of APIs promotes reuse
rather than redevelopment. Supporting
declarative configuration throughout the
API lifecycle further accelerates time to
market and reduces errors.

TCO and ROI

Migrating away from older, expensive
and less flexible technologies (e.qg.,
ESBs/JVM gateways) significantly
reduces the overall hardware and
software spend and often delivers
savings within the first year.

Enabling the Platform Team

Many of Kong's customers strive to
separate a central platform team from
other development teams. The intention
is to isolate common concerns (e.g.,
security, observability, networking) in the
platform team and provide such
functionality “as a service” to others.

Self-Service Training

Technical

Platform Agnostic

Kong can be deployed in any major cloud
platform, including AWS, Azure, GCP and
Alibaba. Its single binary architecture
makes it easy to deploy in an automated
fashion. The most common deployment
targets include virtual machines, Docker
containers and Kubernetes (including a
native Kubernetes Ingress Controller).

Decentralization

As many instances of Kong can be
deployed as desired — in non-prod and
production environments. This allows
distributing the workload and building in
high availability from the start.

Automation

Kong allows automating the entire
end-to-end API development process, e.g.,
as part of a Cl/CD pipeline, starting with
the automatic generation of declarative
config files from the API design stage.

Performance

A single Kong instance can achieve over
25,000 TPS per node while maintaining
latencies of less than 4ms. This is typically
significantly higher than JVM-based

Kong provides over 70 on-demand
courses as part of its Kong University
program. This allows customers to train
developers at scale and constantly take
advantage of new content.

Talent Acquisition and Retention

With more than 27,000 Github stars,
Kong is the most widely adopted open
source API gateway, used by developers
as their preferred tool of choice for API
management. For many companies,
Kong is part of a wider open source
strategy that helps attract and maintain
the best developer talent.

gateways and can unlock large cost
savings. Kong's lightweight footprint (40
MBs) allows the platform to auto-scale to
demand.

Extensibility

Kong's flexible plugin architecture allows
customers to extend the platform to any
specific needs that are not covered by any
of the out-of-the-box functionality.

Observability

Having a central place where all traffic
flows through enables a “single pane of
glass” across all deployments and
environments (e.g., multiple clouds).

Discoverability

A central place and uniform standards
allow documenting all APIs in a single
place. This is a significant enabler for
reusing existing functionality and saving
the cost of developing more services than
necessary.

Kong Multi-Cloud/Hybrid-Cloud Architecture

For customers with a multi-cloud or
hybrid-cloud strategy, a set of
separate Kong instances will usually
be deployed in each cloud provider,
allowing local management of traffic
without incurring the added latency
and transfer costs associated with a
central deployment.

The associated API specifications and
Kong deployment configuration will
typically be version controlled in a
central Git repository and published to
a central Developer Portal.

This uniformity helps reduce the

operational burden of running across
multiple environments.

A{ Kang

Q git

Spec-first

API Design "

Developers

o)

\\

/

KONG

DEVELOPER
PORTAL

Nl KONG adws

GATEWAY |

41 KONG /AAzure

GATEWAY

KONG
GATEWAY

2
8l konG _ﬂ

GATEWAY

Customers

Verifone, powering 46% of the world’s
non-cash transactions, is lowering TCO and
time to market by consolidating 20 separate

/ -l ® API gateways into Kong, as well as further
er’ one increasing productivity by using it to
automate the end-to-end API lifecycle.
Security, scalability and availability are
Verifone’s core pillars, and Kong Enterprise is
a core component to achieving these in its

adoption of microservices at a global scale.

“Kong plug-ins were able to seamlessly integrate
with our CI/CD tools [...], cut[ting] application

@Discovery deployment times by over 90%.”

- Discovery Communications

Why Kong Enterprise Over a Cloud Gateway

Single-pattern multiple clouds — By adopting Kong as a gateway provider, organizations can
provide a single architectural blueprint that can be applied across any cloud and also
on-premise, avoiding vendor lock-in and duplicating effort in applying the same set of policies
across different clouds.

Open and extensible — Cloud gateways are a black-box managed solution and do not allow the
rich customization of both the runtime as well as the plugins and policies applied to the
gateway. Kong Enterprise is built on top of an open core, allowing customers to know exactly
what they are deploying and how they can tune it for their unique requirements.

APl management is not just a gateway — The Kong platform offers more than just a gateway
solution. Cloud vendors typically do not cover the entire APl management lifecycle, which
should start with an API design tool to help developers build, test and mock consumable APIs,
then subsequently publish them to a developer portal where they can be socialized and reused
internally and externally. Finally, when an APl is running in production, it must be observable to
support not just debugging but also the capture of Ml data (e.g., logs, metrics and traces) to
inform decisions related to treating APIs as products.

Why Kong Enterprise Over a JVM Gateway

Lightweight — Kong is a lightweight, single 30MB binary, whereas JVM-based gateways will
usually be hundreds of MB. This has a significant impact on the overall infrastructure footprint
when running at scale. In most cases, Kong will be able to proxy 10-40 times the number of
backend services and API calls using the same set of hardware as a JVM gateway.

Runs anywhere — Kong is a single, self-contained binary based on Nginx that can be run
anywhere, be it in a virtual machine, a Docker container/Kubernetes pod or on a developer
machine. Typical hardware requirements start at 1 core and 2GB RAM, and go up to 8 cores
and 16GB RAM, at which point Kong will typically be able to proxy up to 25,000 transactions
per second. Being able to run on a developer machine greatly increases developer productivity
by allowing end-to-end tests of the gateway and backend code to be run constantly throughout
day-to-day development.

Configuration over code — Kong's entire configuration can be dynamically adjusted at runtime,
including dynamic certificate management. JVM-based gateways will typically require
modifications to the on-disk Java keystore and a subsequent restart of the gateway. Kong
supports and encourages full declarative configuration, allowing the gateway to be driven
entirely from a Git repository.

Extensibility — Kong ships with over 60 built-in plugins for common use cases (e.g.,
AuthN/AuthZ, rate limiting, caching and transformations). In addition, hundreds of additional
plugins are available in the community.

Key Kong Differentiators at a Glance

Portability Any cloud, on-premises, Kubernetes
Automated configuration API, JSON, YAML
Single binary Yes

CI/CD integration testing (*) Yes

Built-in policies 60+ official and 100+ community

Custom policy plugins Yes —, Lua or Go

GraphQL, gRPC Yes

Observability (****) HTTP, TCP, UDP, Syslog (e.g. Splunk, ELK)
Pricing Multi-model(*****)

(*) Can the gateway configuration be tested together with the APl implementation as part of integration or system
testing?.

(**) JVM-based gateways are typically too heavyweight and have too many dependencies to be part of automated
Cl/CD-based integration or system testing. In contrast, Kong would recommend incorporating API gateway
testing into the CI/CD pipeline and test against an actual ad-hoc Kong deployment running in a Docker container.

(***) There does not seem to be a central place in the AWS documentation listing all available policies.
(****) Out-of-the-box export targets of full request/response logs, if available.
(*****) Kong offers multiple different pricing models.

f_i Kang 10

	Bookmarks

