
The Future
is Serverless
When and How to Make
the Switch

© 2018 Kong Inc. All rights reserved.

The Future
is Serverless
When and How to Make
the Switch

Content

The Future is Serverless

What is Serverless?

FaaS

Other Types of Serverless Platforms

Why Serverless?

Pros / Cons

When Should You Use Serverless?

Use Case 1: Processing Data After It’s

Uploaded to Cloud Storage

Use Case 2: Database Access for Client Side

Apps

Use Case 3: Processing Data Streams

Use Case 4: Bursts of Activity

When to NOT Use a Serverless Function?

Use Case 1: Long Running Code

Use Case 2: Interprocess communication

Use Case 3: Legacy systems

6

7

9

12

13

14

17

19

20

21

22

24

24

24

25

Managing Serverless Services

 Authentication and Authorization

 Rate Limiting

 Observability: Metrics, Monitoring, Logging

and Tracing

 Security

 Using an API Gateway

How Serverless Will Change Your Business

 The Rise of DevOps

 More Focus on Business Outcomes

26

26

27

28

29

29

30

31

31

6

The Future is Serverless: When and How to Make the Switch

The Future is Serverless:
When and How to Make
the Switch
You have known about the cloud for years.
But as of late, you’ve probably been hearing
more about Kubernetes and Docker. That said,
serverless is emerging as a significant cloud
architecture paradigm.

Serverless represents a dramatic shift in how
we approach building applications in the
cloud. The repercussions will be felt not just
at the engineering level but higher up the ap-
plication stack at the business level. Server-
less computing can dramatically change the
way you manage your cloud infrastructure and
build your systems. Instead of building your
entire system or microservice, you can deploy
a few functions at a time. You can just focus
on the code and know that your functions will
scale with your application—without you hav-
ing to manage the infrastructure.

We’ll start by defining serverless, review use
cases and how to determine if serverless is a
good fit for use in your stack, how to secure
and manage it at scale, and lastly, how this
change may affect your business in the future.

7

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

What is Serverless?
So what exactly is serverless? To start, yes,
there are still servers involved. However, what
makes something serverless is the fact that
while those servers exist they are irrelevant to
your application architecture. As a result, your
engineering team only needs to focus on the
application code.

There are many different and competing defini-
tions of serverless floating around. So, let’s fo-
cus on some common characteristics for the
purpose of this article. Serverless is a cloud
architecture that generally adheres to the fol-
lowing characteristics

• No servers, virtual machines, or containers
to manage

!"#$%!%&'#(

Back-end logicFront-end logic Security Database

?@"A@"(@??
(C?%'D E(%@'!-?%$@

#'$!F%"$-G#"!H ?@"A%E@?)

Traditional vs Serverless

Fig 1: Weston, Robin. Serverless Architectures
and Continuous Delivery

8

The Future is Serverless: When and How to Make the Switch

• A reliance on managed services; either at
the cloud provider, third party, or SaaS level

• Event-driven architecture resulting in ap-
plication code only running when triggered

• A cloud provider billing model where you’re
only charged for what your application
uses

Serverless applications

/0/12 34567/ 85172941 3/6097/3 (;1<2=91>)

Changes in
data state

Request to
endpoints

Changes in
resource state

Serverless computing changes the shared
responsibility model. Instead of you manag-
ing the OS/runtime, the platform as a service
(PaaS) provider now manages it for you. This
allows your engineers to focus on the code.

These are some common characteristics of
serverless at a high level to help us to better
understand what we’re talking about. Now let’s
dive deeper.

Fig 1: Amazon Web Services

9

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

FaaS

When people talk about serverless, they most
often think about functions as a service, or
“FaaS”. This is because FaaS is at the heart of
most, but not all, serverless applications. It’s
also the most visible part of most cloud pro-
viders’ serverless offerings as AWS promotes
Lambda, Google promotes Cloud Functions,
and Microsoft promotes Azure Functions.

Serverless functions are not full applications.
Take an application, e.g. a backend REST API,
and break it down into smaller pieces. Each
endpoint on that REST API becomes its own
independent function that performs a specific
narrow task and these functions are triggered
to run only when it receives an HTTP request.

!

!

!

!

!

!

!

User Functions Workflow Framework

Fig 1: Fission.io. Serverless Workflows for
Kubernetes.

10

The Future is Serverless: When and How to Make the Switch

Rather than a single application that can create,
get, update, and delete records in a database,
you have independent functions that perform
these tasks and can be managed entirely on
their own. This means that they can be up-
dated and deployed independent of one an-
other. Plus, by decoupling these functions you
reduce the risk of introducing a bug in one
function that prevents another function from
performing.

Functions running on a FaaS platform are ex-
pected to be both short running and ephem-
eral. That means they should only run for up
to a few minutes, enough time to complete
their narrowly-focused task. Ephemeral means
they do not maintain the application state in
between invocations; rather, any application
state should be managed using an external
datastore.

!"#$%&
'(("#)!'&#)%*

+&&(
,)-&$,

.-%!&#)%
!)%&'#%$,*

$/$%&
,)-&$,

0-*#%$**
$,/#!$

!)%&'#%$, !"-*&$, 2'%'3$,

Serverless Architecture Overview

Fig 1: Gunaratne Imesh. “Adapting Serverless
Architecture.” DZone Guide to Cloud, Volume IV.

11

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

There are a variety of FaaS platforms out there,
both publicly and privately hosted. In the public
cloud space AWS, Google, and Microsoft pro-
vide FaaS services along with additional man-
aged cloud services to build serverless appli-
cations.

Privately-hosted serverless platforms include
Knative and Apache OpenWhisk. While Knative
is Kubernetes dependent, OpenWhisk can run

!"#$%&'#

!"#$%&'#

!"#$%&'#

!"#$%&'#

!"#$%&'#

!"#$%&'#

('#')&%*&$
+,,)&$+%&'#

(&$-'./-0&$/

(&$-'./-0&$/

(&$-'./-0&$/

IaaS PaaS FaaS

&'()*+, &'()*+, &'()*+,

-../*0-)*1(-../*0-)*1(-../*0-)*1(2,(31&

1.,&-)*(4 676),+ 1.,&-)*(4 676),+ 1.,&-)*(4 676),+

*(8&-6)&'0)'&, *(8&-6)&'0)'&, *(8&-6)&'0)'&,

8'(0)*1(6 8'(0)*1(6 8'(0)*1(6 3,2,/1.,&

Fig 1: Cloudflare. “What is Function as a Service.”
Fig 2: Assist: “Pros and Cons of Serverless
Computing. FaaS comparison”

12

The Future is Serverless: When and How to Make the Switch

on cloud management platforms including Ku-
bernetes, Mesos, and Docker Compose. These
private serverless platforms allow you to lever-
age serverless architecture on top of your ex-
isting cloud management infrastructure.

Other types of serverless
platforms

FaaS applications aren’t the only type of cloud
applications that can be considered serverless.
There are many other serverless computing ser-

vices available including object stores, NoSQL
databases, and notification services. While
each of the serverless computing offerings run
on infrastructure, you as the user of the service
don’t need to worry about managing the infra-

Fig 1: Joan, Naame Seraphine. “All You Need
to Know About SAAS Architecture.”

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/

13

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

structure; the PaaS provider takes care of this.

Additionally, static websites can be built using
a serverless approach. Consider a static web-
site built with HTML, CSS, client-side JavaS-
cript, and images where you’re only charged for
the number of site requests made in a month.
Now compare this with a similar site running
on hosts where you’re charged by the hour,
whether or not you are actively serving up con-
tent. Looking further out, as more developers
move towards managed GraphQL services, we
will likely see an increase in serverless dynamic
web applications lacking a FaaS component.

Why Serverless?

Why would you adopt a serverless architec-
ture? To start, it decreases the complexity of
operating cloud infrastructure for an individual
engineer. As a result, an engineer spends less
time focusing on infrastructure and more time
on their code and the problem their code is
expected to solve. Furthermore, the reduced
cloud complexity means less friction between
developers and operations. This results in faster
feature development and faster delivery to pro-
duction.

14

The Future is Serverless: When and How to Make the Switch

Cost implications are another reason for
serverless adoption. Why pay for a cloud ser-
vice when you’re not actively using them? By
only paying for cloud resources that are active-
ly being used, an organization can cut costs.
This is what makes infrequently-used applica-
tions in your environment a perfect candidate
for serverless. However, not all applications
are created equal and some will see better
cost benefits than others.

Finally, and most importantly, an organization
can focus on their core competency. Today,
every company is a technology company. Ev-
ery company has a large technical investment
required to keep their organization running. Go-
ing serverless allows an organization to spend
less time and resources on operating applica-
tions. The newly-found time and resources can
be redirected towards delivering value to cus-
tomers. What makes your organization unique
isn’t its cloud infrastructure, it’s the features
and values you provide to waiting users.

Pros / Cons

As with all technology, there are pros and cons.
Here are the main points you should consider
before adopting a serverless solution:

15

The Future is Serverless: When and How to Make the Switch

Pros

• Highly scalable: The first pro of serverless
is its scalability. Your serverless platform
is responsible for allocating and managing
function instances to meet demand. Con-
trast that with microservices on a tradition-
al server architecture where you’re respon-
sible for scaling hosts either vertically or
horizontally to meet demand. This requires
manual intervention or autoscaling rules
that can be slow to execute.

• Reduced cloud operations work: Although
serverless does not completely eliminate
this, it reduces cloud infrastructure op-
erations issues. How much time does a
developer spend waiting for a host to de-
ploy their new code? With serverless, de-
ploying both the application code and the
supporting infrastructure simultaneously
only takes minutes. There’s also less cloud
infrastructure to go wrong and impact the
application code. How many times does
a host issues with CPU, memory, or disk
cause application issues? These are no
longer issues for you.

• Agility and focus: Finally, serverless lets
application developers focus on the prob-
lem their code attempts to solve without
being distracted by cloud infrastructure.

16

The Future is Serverless: When and How to Make the Switch

Plus, the ability to rapidly deploy means
a team can ship and measure the suc-
cess of more features. A team adopting
serverless should be able to ship more
features and accurately measure whether
or not they have shipped the right features.

Cons

•	 Vendor lock-in: If your organization is con-
cerned with vendor lock-in, then serverless
is not the right choice for you. The deeper
you go into adopting a cloud provider’s ser-
vices, the more value you obtain from it. If
you’re worried about being too reliant on
a cloud provider and want greater nimble-
ness to switch providers, serverless isn’t
the best choice for you.

•	 Engineering practices still emerging:
Serverless engineering is still emerging.
That means the patterns, processes, and
tools are still in development. Additionally,
finding people readily skilled in serverless
engineering is not easy. You will need to
take the time to develop your organiza-
tion’s best practices and train resources.

•	 Not right for every workload: Serverless is
not right for every workload, particularly
long running workloads. Serverless is de-
signed for short running ephemeral tasks.

17

The Future is Serverless: When and How to Make the Switch

If your workload requires extensive execu-
tion time or needs to keep track of state
on disk in between executions, then it’s not
right for serverless. But, that’s an issue a
little, or a lot, of refactoring might solve.

Neutral

Cost: Several factors can impact the cost of
serverless services including the workload,
the type of service being used, and platform
pricing models. Not all serverless workloads
involve the same costs. That means some ap-
plications will benefit significantly over running
them on servers; others may be more expensive.

When Should You Use
Serverless?
When is it appropriate to use serverless solu-
tions? And more specifically, when should you
use serverless functions? Some serverless
services like S3 and DynamoDB do not have
any duration or usages limits. This means you
can store as much data as you like in an S3
bucket.

18

The Future is Serverless: When and How to Make the Switch

When you need to process compute workloads,
functions like Amazon Lambda come with a
few limits that you should be aware of. (You can
find the complete list here: https://docs.aws.
amazon.com/lambda/latest/dg/limits.html.)

1.	 The maximum size of the package you up-
load to AWS Lambda (currently this is 50
MB).

2.	 The amount of memory used by your
Lambda function (the maximum limit is
about 3 GB).

3.	 The duration of your function needs to
complete within 15 minutes.

These limitations drive which use cases are
best for serverless functions. Use a serverless
function whenever you have a short-lived com-
pute-based task to perform.

There are many different use cases where us-
ing serverless functions are a good choice:

•	 Data processing - Managing real-time data
analysis (instead of an ETL job)

•	 Chatbots - Power your chatbot from a
serverless function

•	 Voice-enabled apps - Like Alexa, use a
Lambda function to power your voice UI

•	 Automation - Use Serverless functions to

19

The Future is Serverless: When and How to Make the Switch

manage your cloud infrastructure, enforce
policies, and so on

• IoT - Use serverless functions for server
side IoT processing, since large networks
of IoT devices can produce massive
amounts of data.

Let’s explore these use cases in more detail to
get a better understanding. Here are several
key use cases where serverless functions are
a great fit:

Use Case 1: Processing data after
it’s uploaded to cloud storage

Serverless functions can be triggered in real-
time to process data immediately after it’s
uploaded to an Object Store like S3, Cloud
Storage or Azure Storage. For example, you’ve
created an expense tracking mobile app. When
your users take a picture of a receipt you want
to store the image in the Object Store and then
process the image. This is a great compute
use case for a serverless function.

To implement this solution, configure the Ob-
ject Store to invoke a specific serverless func-

20

The Future is Serverless: When and How to Make the Switch

tion whenever an object-create event is trig-
gered in S3. You aren’t limited to just working
with an Object Store; you can use other Server-
less Computing services from your function.
In this example, we could process the image,
store the image in a different Object Store
bucket, and then update a row in a serverless
database table.

!"#$%& '()*$%% *)"%+,$

Use Case 2: Database access for
client side apps

It’s becoming more common to build apps with
rich client side functionality such as mobile
apps or single page web applications built on
frameworks like React. For security reasons,
they lack direct access to databases and you
typically want a web service to authenticate
and validate input.

Fig 1: Amazon Web Services

21

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

For example, users who are signed in want
to see how many times their profile has been
viewed and by whom. When a user clicks on
their profile, we want to display their latest pro-
file statistics. Your web application makes a
GET request to a REST API Gateway which in
turn invokes a serverless function. The server-
less function makes a database call to get the
user profile data, summarizes the data, and
returns the result. Then, the web application
displays the data. This a short-lived operation
and doesn’t require running a dedicated server.

Denied403

Allowed

Context + Token
or Request params

Request w/ a bearer
token or params

Principal + Policy

!"# %!&'(!
)*+,-./+#

%!&'(! !*-0
)*+,-./+

1+(2/.+-# /+
!&!3/+ 1,2

2/%.,5 .#
16!%*!-1(

2/%.,5 .#
,!,01(

!2. 7!-1"!5,%.1+- !+5 /-018 2*'%.,.-5
!,,1#.'%1 1+(2/.+-

Use 3: Processing data streams

Serverless functions are great for processing
streams of data that update on some regular
basis. For example, a function could be used
along with Apache Kafka or Amazon Kinesis

Fig 1: Munro, Jamie for Sky Betting & Gaming.
“Optimising an AWS Microservice.”

22

The Future is Serverless: When and How to Make the Switch

to aggregate data and store it in a database. In
this use case, Kafka will store a data stream,
and then a Lambda function will poll Kafka
to consume data in batches of 50 items and
store it in a database.

Kinesis Data Analystics: Deliver results to Lambda

789:;8; <=>=
;>?:=@ | B8?:CD;:

• Tumbling windows: Lambda
invoked at the end of the window

• Sliding windows or continuous queries:
invoked ~1 per second

• Data is chunked into <6MB batches
before delivering to Lambda

Failing invocations will be
retried indefinitely, and may
result in backpressure!

789:;8; <=>=
=9=EF>8G;

H=G7I?:;;J?:

<=>=
I?D<JG:?

Use Case 4: Bursts of activity

If your application receives an unexpected
burst of activity, it can be expensive to main-
tain extra server capacity, and even auto-scal-
ing rules can be slow to execute.

For example, let’s say your backend service
supports both a web site and mobile applica-
tion. Today’s your lucky day! Your app is fea-
tured on the “Today” page of the AppStore and
then featured on Hacker News. With this suc-
cess comes an unexpected wave of activity.

Fig 1: Amazon Web Services

23

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

By using a Serverless design for your backend,
your users would never know you weren’t ex-
pecting them. Instead of your system failing
because it can’t handle the load, your server-
less infrastructure scales to meet the need.
Companies like The Financial Industry Regula-
tory Authority (FINRA) can process up to half a
trillion serverless function calls a day. It’s likely
that any load your system receives—whether
planned or unplanned—will be handled grace-
fully by a serverless architecture.

Inconsistent traffic pattern: traditional deployment

3456478/74:;<= 3456>34= 743?437

Fig 1: Roberts, Mike. “Serverless
Architectures”

https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/

24

The Future is Serverless: When and How to Make the Switch

When to NOT Use a
Serverless Function?
Using a serverless architecture doesn’t give
you control over the type of compute instanc-
es used. Depending on your system needs,
the serverless function execution environment
may not be appropriate.

Here are several use cases where serverless
functions are not ideal.

Use Case 1: Long running code

Serverless functions typically have a maximum
execution time. Therefore, they are not ideal if
your code runs continuously or needs to per-
form long computations. For example, your
application has a scheduling algorithm that
matches thousands of students and classes
with teachers. The matching algorithm takes
about an hour to complete; this code will not
run successfully as a serverless function. You’ll
either need to change your implementation or
deploy your application to a Compute resource
since there’s no way to change the serverless
function execution time limit.

25

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

Use Case 2: Interprocess commu-
nication

Since serverless functions run in an isolated
environment, there is no way for two functions
to share memory. A scenario like this most
likely comes from a multi-threaded imple-
mentation where each thread uses a shared
memory region to pass data back and forth.
That said, you could use a separate cache to
store data. This cache can be shared between
the functions or invocations of a function.

(") %&''"(&)"''*+((,) '-".&/ %&%0.1

2&.+&3

%&''"(& 45&5&

%0 %1 %+
…

).09&'' A

).09&'' B

2&.+&3

'-".&/ %&%0.1

).09&'' A

).09&'' B

Use Case 3: Legacy systems

If you are moving your existing system to a
PaaS, then chances are it’s not designed to run
in short bursts of activity; therefore, it’s not ap-
propriate for serverless functions. Since most
enterprise systems are designed to start up
and run forever, or until they stop or crash, a lift-

Fig 1: W Schools. “Interprocess
Communication (ICP)”

26

The Future is Serverless: When and How to Make the Switch

and-shift approach may not fit the serverless
computing model. Once you systems move to
the cloud, however, you can start moving por-
tions of your application to serverless.

Managing Serverless
Services
When considering a move to serverless func-
tions, you should also look at how to effective-
ly manage them. Since adopting serverless
reduces your operational and management
overhead, you need tools in place to ensure
that functions run reliably, securely, and eco-
nomically.

Authentication and Authorization

Application authentication and authorization
involves the adoption of cloud provider ser-
vices (e.g. AWS Cognito), third party SaaS ser-
vices (e.g. Auth0), or even custom authoriza-
tion functions running on the same functions
as a service platform. Organizations typically
depend on some sort of token or API key func-
tionality to control public access. Compliance
requirements may even dictate that employ-

27

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

ees be granted access to sensitive data on a
limited basis. Relying on an IP whitelist or VPC
connection may not offer the fine-grained con-
trol needed in large and diverse organizations.

!"# %!&&' !()*+,)#%!)#-,

!"" !

!"" .

!"" %

IAM

Rate Limiting

The built-in scalability of serverless might
make you think there isn’t a need for rate limit-
ing, but that’s not true. Most platforms offer a
usage-based payment model, so spikes in us-
age can lead to a large bill, whether intentional
or not.

For each API request that comes in, your cloud
provider is responsible for allocating a func-
tion instance to handle the request. With the
scalability of serverless and the burden of
meeting demand shifted to the cloud provider,

Fig 1: Optiv. “Five Security Best Practice for
Serverless Applications.”

28

The Future is Serverless: When and How to Make the Switch

why would API limiting be necessary? That’s
because on a practical level, cloud providers
impose limits or quotas on services. API limit-
ing is necessary so that overuse doesn’t bump
into these limits. What’s more, these limits
are often account wide. That means an over-
used API can affect the ability of other APIs to
function successfully. Fortunately, the cloud
providers have the ability to rate limit their API
services or limit the concurrency of function
invocations. For smarter rate limiting logic,
you may want to consider using your own API
Gateway like Kong for rate limiting.

Observability: Metrics, Monitoring,
Logging, and Tracing

We mentioned before that serverless reduces
but does not eliminate cloud operations work.
Serverless, with its event-driven architecture,
creates a degree of application complexity.
When something goes wrong, where did it go
wrong in the execution chain? Keeping server-
less applications running means investing
in the observability of your whole application
stack. But it’s not an increase in overall work-
load. The time not spent on managing hosts
means more time proactively ensuring the reli-
ability of your application. More time can cre-

https://konghq.com/blog/how-to-design-a-scalable-rate-limiting-algorithm/

29

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

ate a better state of readiness and reliability
than your applications today.

Security

Serverless security implications are similar to
today’s virtualized or containerized microser-
vices. Application code and application depen-
dency security are both highly important and
the same practices carry over to serverless.
But without servers there isn’t any need to
spend time on host-level security issues such
as software patching and access controls.
Instead, turn your attention toward securing
cloud infrastructure and your function code to
prevent attacks like remote code execution or
SQL injection.

Using an API Gateway

API gateways like Kong can make it easier to
manage your serverless functions. Rather than
implement all these management features
within each function, Kong allows you to put
them in a centralized and easily managed lo-
cation. It acts as proxy and accepts calls from
clients, then passes them to serverless func-
tions. Adding features like authentication, se-

https://konghq.com/

30

The Future is Serverless: When and How to Make the Switch

curity, observability and more is as easy as
adding a plugin from Kong Hub. Also, an API
Gateway that is separate from your cloud
provider allows you to manage functions in a
multi-cloud environment.

This further reduces the amount of develop-
ment effort required to publish new functions.
The combination of not having to worry about
server infrastructure or service management
means that your developers can focus on
business logic and accelerate your product’s
time-to-market.

How Serverless Will
Change Your Business
Technology altering organizational processes
and structures isn’t new. Just look at public
cloud adoption and its impact. The same will
happen again with serverless. The competi-
tive advantages will belong to companies that
adopt these practices early on. Here are some
ways the world is already beginning to change.

https://docs.konghq.com/hub/

31

The Future is Serverless: When and How to Make the Switch The Future is Serverless: When and How to Make the Switch

The Rise of DevOps

To start, organizations that go serverless will
see a shift towards developers and operations
working more closely in DevOps roles. By
combining infrastructure and code together,
software developers won’t need operations
engineers to get their code into production.
Some organizations will see traditional opera-
tions engineers reskilling and becoming a part
of development teams. They will handle the
operational needs of their teams’ services in
this new position. This is a DevOps dream: a
full cross-functional team involving all mem-
bers of the software development and opera-
tions lifecycle.

More Focus on Business Outcomes

Engineering teams will become more focused
on achieving organizational objectives. The
focus, speed, and agility serverless provides
means more emphasis on outcomes. Why?
Because the team now has the time to do
so. Struggling less with the upfront technical
needs of their work, teams can deliver faster
and spend their time measuring the success
of what they’ve delivered. Picture a team that
isn’t only focused on what they’ve engineered,

32

The Future is Serverless: When and How to Make the Switch

but whether their engineering is valuable and
worthwhile.

Adopting a serverless architecture is not an
easy task for companies with an extensive
code base. Solutions like Kong make it easier
to adopt and manage serverless functions by
providing you with out-of-the-box support for
authentication, rate limiting, and more. Check
out our one-pager on how to Manage and se-
cure your serverless functions with Kong.

The Future is Serverless: When and How to Make the Switch

Konghq.com

Kong Inc.
contact@konghq.com

251 Post St, 2nd Floor
San Francisco, CA
94108 USA

