
Architecting
the Future
Cloud Native Applications

© 2019 Kong Inc. All rights reserved.

Architecting
the Future
Cloud Native Applications

Architecting the Future: Cloud Native Applications

Content

Architecting the Future: Cloud Native Applications

What is a Cloud Native Architecture?

The Journey: How We Got to Cloud Native Applications	

Microservices: The Heart of Cloud Native Design

The Evolution Toward Greater Elasticity

Serverless Architectures

Cloud Native Architectures Combine Microservice and
Serverless Designs

Drivers of the Cloud Native Movement

Benefits of a Cloud Native Architecture

Challenges of Moving Toward Cloud Native Computing

The Impact on Practitioners

Considerations for Practitioners

How Cloud Native Will Affect the Entire Ecosystem

New Cloud Native Application Development is on the Rise

Idea to App in the Shortest Amount of Time

6

8

11

13

14

16

17

18

20

22

23

23

24

25

26

6

Architecting the Future: Cloud Native Applications

Cloud native has become one of the biggest trends in the software
industry. It has already changed the way we think about developing,
deploying, and operating software products.

Organizations across every industry want to remain competitive,
and their leaders realize that it is necessary to maintain at least two
technology dispositions. Of course, there is a basic need to “keep
the lights on” while supporting product and service innovations.
The other disposition must be forward-looking—to grapple with
fast-changing technology and which technologies to embrace. This
includes CI/CD, containerization, and microservices, to name a few.
The pressing need is to secure the right amount of infrastructure
flexibility and performance elasticity to manage unpredictable usage
volume and geographic dispersion. At many companies, there is a
strong sense of urgency: adapt quickly, or become irrelevant.

As architects and engineers have sought to exploit cloud computing,
the essential drivers of cloud native architecture have become the
following:

Resilience
It’s risky to assume that your deployment environments and the net-
works are permanent. They will eventually change—and substantially
so. Your critical applications may not receive any warning to accom-
modate a smooth shutdown. Therefore, it’s vital that you design for
failure and assume that some services on which you depend could
disappear at any time.

Discovery
Services that support your applications must be readily locatable and
accessible by other services. Services are often built to scale dynami-
cally and change locations. Therefore, software must have the ability
to readily discover the locations of other components and services—
and communicate with them.

7

Architecting the Future: Cloud Native Applications

Scalability
Though you may manage your applications in the cloud, these apps won’t
achieve the efficiencies of a cloud native architecture if they are unable to
scale horizontally.

Robust, reliable cloud native computing is driven by sound cloud native
architecture.

To better prepare for the future, it’s important to get a solid understanding
of this rising technology trend. In this e-book, we examine cloud native
architecture, look back at the rise of cloud native app development, and
explore the future of cloud native on the entire software ecosystem.

While cloud native architecture may never be understood by typical con-
sumers, it is steadily making headway in innovative companies and con-
tinues to have more influence. Indeed, there is already a well-established
industry group, The cloud native Computing Foundation. Industries as
diverse as online retail, investment banks, banking and various consumer
industries are embracing cloud native architecture as a major foundational
underpinning of business strategy. It’s important to understand this new
technology movement.

8

Architecting the Future: Cloud Native Applications

What is a Cloud Native
Architecture?
Let’s begin with a general definition:

A cloud native architecture is a model for building
and running applications on a platform that is dis-
tinct from infrastructure dependencies—exploits
the major aspects of the cloud computing model.

Adopting cloud native architecture is much more than merely moving
some workload over to a public cloud vendor. It is an entirely new and
different approach to building infrastructure, developing applications,
and structuring your teams.

In more detail, a software application that exhibits a cloud native
architecture is built extensively with microservices. Typically, a cloud
native app runs on a containerized and active-orchestration platform
that leverages various cloud computing assets such as Kubernetes.

Devops Continuous
Delivery

Microservices Containers

Cloud Native

9

Architecting the Future: Cloud Native Applications

Cloud native architecture consists of four major aspects: Microser-
vices, DevOps containerization, and continuous delivery.

Microservices
In cloud computing, this is a sub-architecture in which applications
utilize sizeable collections of small services—each of which performs
a very specific function. Typically, a microservice runs as an indepen-
dent process that implements a specific business or technical capa-
bility. A microservice communicates by means of APIs, or a messag-
ing protocol. Good design principles call for microservices that are
deployable, upgradable, scalable, and restartable. Each microservice
should be independent of other services, and also free of dependence
upon the calling application. This highly resilient architecture enables
frequent updates to live applications with no impact to application
end users.

DevOps
DevOps is a tightly woven collaboration among software developers
and IT operations. For cloud native DevOps teams, the difference
from conventional teams is that these apps are built to exploit the
adaptability and resiliency of cloud computing technologies. The goal
is to continuously and progressively deliver high-quality software that
meets customer requirements and expectations. On the best teams,
DevOps supports a culture in which software is frequently built,
tested, and released with a high degree of consistency.

Continuous Integration and Delivery
Enabled by Agile product development practices, continuous deliv-
ery (CD) is a practice that frequently and automatically moves small
batches of updated software through a development pipeline to final
delivery into a production environment. CD is most effective with
the support of continuous integration (CI), which is a development
practice requiring developers to integrate new code into a common
repository several times daily. During an automatic build process,
each code check-in is verified. This enables teams to respond much
sooner to any problems that are found. The major goal of CI/CD is
to bring software releases to the point of uneventful and error-free
reliability. Using platforms such a Jenkins or CircleCI, many organiza-

10

Architecting the Future: Cloud Native Applications

tions that have built a mature CD pipeline can deliver frequently with
low levels of risk—and get quick feedback from end users.

Containerization
Essentially, a container is a software package containing everything
necessary to run an application. For example, many simple containers
consist of an application server, a virtual machine (VM), and the ap-
plication itself. A container can run in a virtualized environment, while
isolating the application residing within from its environment. The
main benefits of this architecture include environmental independence
and high portability. It’s easy to move the same container among sev-
eral environments: development, test, or production. If your application
has a horizontally scalable design, you can start multiple instances of
a container to accommodate additional user demand. You can setup
automatic termination of these instances with a decrease in demand.

Currently, Docker is the most widely used container implementation.
Containers offer greater efficiency and performance in comparison
with VMs. Using OS-level virtualization, a single operating system
instance can dynamically support multiple isolated containers—each
having its own distinct, writable file system and resource profile.
Virtualization technology is combinable with container orchestration
to achieve a high degree of flexibility and responsiveness. Only a small
amount of overhead is necessary to create and terminate containers
dynamically. Combining this with ability to densely pack containers
into virtual machines means that containers are a very attractive com-
pute vehicle for deploying individual microservices.

11

Architecting the Future: Cloud Native Applications

The Journey: How We Got to
Cloud Native Applications
Over the past decade, modern software development has been
abandoning use of on-premise physical servers in favor of cloud
computing infrastructure. When cloud computing initially arose, many
IT departments tried to merely transfer their systems to the cloud
without making any changes to application architecture. Multi-tier
applications were simply migrated from local physical servers to a vir-
tualized cloud environment. Over time, cloud system engineers have
made many innovative improvements in cloud platforms and infra-
structures. These initiatives have spawned several engineering trends
that continue to this day. One such trend is the move from monolithic
systems toward microservice architectures, which has enabled the
cloud native movement we see exploding today.

There are reciprocal benefits available to those that invest in the cloud
native movement. The pursuit of more efficiency in the use of cloud
resources continues to affect cloud native architectures, and the
pursuit of better architecture further improves efficiency. Overall, this
efficiency comes in the form of better customer service and faster
product and service development.

In addition to the cloud native characteristics that we mention above,
these are some of the dominant software development trends that
are presently shaping cloud native architecture:

REST APIs
REST-based APIs provide scalable and pragmatic communication.
This approach relies heavily on long-standing Internet protocols, infra-
structure, and well-defined, well-established standards.

State Isolation
Stateless components are much easier to horizontally scale—either
up or down. Though stateful components aren’t entirely avoidable,
they should be reduced to a minimum.

12

Architecting the Future: Cloud Native Applications

Loose coupling
With loose coupling, service composition occurs largely through
events or data. More specifically, event coupling relies on messaging
solutions such as the AMQP standard. Data coupling often relies on
scalable yet eventual consistent storage solutions—which are often
NoSQL databases.

Elastic Platforms
Elasticity is the extent to which a system accommodates workload
changes with automatic provisioning in real-time. Elastic platforms
such as Kubernetes, Swarm, or Mesos are often seen as critical unify-
ing middleware for broadly elastic infrastructures. These platforms
greatly expand and maximize resource-sharing. They also increase
utilization for the underlying compute, storage, and network resources
for standardized deployment units. Learn more about cloud native
elasticity below.

Cloud Modeling Languages
Modern cloud computing supports a high degree of automation
in service provisioning, which enables cloud-service customers to
dynamically acquire services for deploying cloud applications. Special-
ized cloud modeling languages seek to provide flexible approaches for
managing the increasing diversity of cloud computing features. These
new languages aim to support different scenarios—such as migration
of existing applications to the cloud, new cloud app development, and
optimization.

Serverless
This is a cloud-app architecture that depends heavily upon external
third-party services. These are integrated using small event-based
trigger functions in an architecture known as Function-as-a-Service
(FaaS). FaaS uses time-sharing to exploit and maximize resource-
sharing within these elastic platforms. Read more on this elsewhere in
this paper.

13

Architecting the Future: Cloud Native Applications

Microservices: The Heart of
Cloud Native Design
Many business applications have been built in the last 15 years using
various types of service-oriented architecture (SOA), and this has
eventually led to the rise of cloud native architecture. Service-oriented
computing is a computing paradigm for managing the complexity of
distributed systems and integrating disparate software applications.
In essence, one service provides functionality to other services—pri-
marily through a messaging scheme. Importantly, an SOA service
design decouples its interface(s) from its core implementation, and
specialized workflow languages orchestrate the actions among all of
the services.

Historically, many technologists have been optimistic that these
service-oriented applications are redeployable into cloud environ-
ments with only a modest level of reconfiguration. Indeed, many
would describe such apps as cloud-ready or cloud-friendly. However,
cloud-system engineers commonly point to a big problem. Though
conventional SOA applications consist of distributed services—their
deployment does not consist of such service distribution! From a de-
ployment perspective, such “distributed” applications are effectively
monolithic applications.

The trouble is that any update or service release for a legacy distrib-
uted application must be redeployed in its entirety. This leads to the
common practice in which monolithic applications are simply repack-
aged into a single, large virtual machine image. But the consequence,
in many cases, is significant downtime for end users.

These legacy monoliths also have limited scalability—effectively
unable to handle substantial variation in computing workload. Such
architectures may be acceptable for some operations, such as batch
processes running in the wee hours of the morning. But, it is unwork-
able for any modest-load daytime operation.

14

Architecting the Future: Cloud Native Applications

The need to move beyond such constraints and limitations has been
driving systems architects toward the adoption of microservice archi-
tecture, which is a major characteristic of cloud native computing.

The Evolution Toward
Greater Elasticity
Cloud computing supports cloud native architecture. Though it has
taken many years, senior system engineers have come to better
understand and exploit the elastic potential of modern computing
technology to adequately support cloud native applications. Today,
a number of innovative system designs specifically focus on elastic
cloud infrastructures. This directly supports horizontal scalability,
which is essential for cloud native architecture. Using containers, mi-
croservices, and serverless architectures, these systems significantly
increase the utilization of underlying computing infrastructures. This
architecture is now commonly known as cloud native.

To count as an advancement over conventional architectures, cloud
infrastructures and platforms must be highly elastic. Elasticity is the
extent to which a system accommodates changes in workload by
automatically provisioning and terminating resources—in real-time.
Lacking essential elasticity, cloud computing is typically unfeasible.
Indeed, it is both financially and operationally impracticable.

The figure below depicts a definitive trend that has been developing
over the last decade. Machine virtualization made it possible to con-
solidate large arrays of bare-metal machines and increase utilization
of physical boxes—and it forms the technology backbone of cloud
computing. However, while virtual machines have a smaller resource
footprint, the image size of VMs are still quite large.

15

Architecting the Future: Cloud Native Applications

Resource utilization progress with the evolution
of cloud architecture

Figure 2. The cloud architectural evolution from a resource utilization point of view,
adapted from “A Brief History of Cloud Application Architectures,” by N. Kratzke, 2018,
Applied Sciences

Bare Metal Server Bare Metal Server

Bare Metal Server Bare Metal Server

Bare Metal Server

A

A

A

A A

VM

VM VM

Container Engine Container Engine

FaaS Runtime

… …

VM VM

VM VM

B

B

B

BB

In case of dedicated servers applications (A,B) are
deployed onphysical servers. In consequence, the
servers are often over dimensioned and have
inefficient utilization rates.

Machine virtualization is mainly used to
consolidate and isolate applications on Virtual
Machine instead of dedicated servers.This
increases the application density on Bare Metal
Servers but the Virtual Machine images
(deployment unit) are very large.

To pragmatically operate more than one application
per virtual machine, containerization established as
a trend. A container starts faster than a Virtual
Machine and shares the operating system with
other containers, thus reducing deployment unit
sizes and increasing application density per virtual
machine.

But a Container still request a share of CPU,
memory and storage - even if the provided service is
hardly requested. It is more resource efficient, if
services would consume resources only if there are
incoming requests. FaaS runtime environments
enable that services can timeshare a host. However,
this involves to follow a serverless architecture
style.

KLMN OPQRLST

Dedicated Server

Containerization Microservices

Virtualization

Serverless, FaaS

1

3

2

4

16

Architecting the Future: Cloud Native Applications

Container technology came along to improve and simplify standard-
ized deployments, while also increasing VM utilization. There is a
trade-off, however. Although containers can quickly scale, they are
always on—and always consuming considerable resources. To miti-
gate this, FaaS technology arose and made it possible to time-share
containers on specialized container platforms. It’s now feasible to
employ a FaaS-only architecture to execute any deployment unit that
presents a request for processing. This time-sharing capability is
quite feasible on the same hardware, so FaaS can support a scale-
to-zero capability. This greatly improves resource efficiency, which
is fairly easy to justify financially. Recently, the technology stack has
come to a point at which it can manage a complex array of resources
in the cloud—and run significantly more workload on the same physi-
cal infrastructure.

Serverless Architectures
Microservice architectures offer modern solutions that can scale
computing resources at a scale that is not achievable with monolith-
ic architectures. However, any microservice architecture faces other
challenges, such as deploying all microservices, operating them in a
cloud computing environment, and scaling them as necessary.

This gave rise to serverless architectures and FaaS platforms in the
cloud computing ecosystem. AWS Lambda is perhaps the most
prominent, but there is also Azure Functions, Google Cloud Func-
tions, OpenWhisk, and Spring Cloud Functions—among many others.
All commercial platforms appear to follow the same basic principle:
providing very small services (often consisting of only one stateless
function each) that are billed on a per request or per-API call runtime-
consumption model.

Serverless design supports event-driven applications, in which light-
weight processes are triggered in response to an event. It is more
intricate than microservice architecture, and facilitates the creation
of a multitude of functions. These small functions are sometimes

17

Architecting the Future: Cloud Native Applications

called nanoservices—easily deployable and automatically scalable.
Done properly, there is plenty of potential to reduce operations and
infrastructure costs.

Cloud Native Architectures
Combine Microservice and
Serverless Designs
Microservices are deployable in various ways. They are often found
in combination with a serverless architecture, residing in containers,
or built with using PaaS. The benefits of microservices are applica-
ble to local app development. But, the big advantages of microser-
vices are seen most clearly within the context of a cloud environ-
ment—exploiting containers or in a serverless architecture.

The difference between a microservice and a serverless function is
that a microservice is larger and has more capability than a func-
tion. Typically, a function is a relatively small bit of code that per-
forms a single action in direct response to an event. A microservice
may be equivalent to a serverless function in many cases, or it may
consist of many functions.

Serverless microservices reside in a serverless infrastructure
and only operate when a call is made by an application. A server-
less computing provider provides access to its microservices or
functions. Subscribers can write and deploy code that interacts
with these services—without any concern about the supporting
infrastructure. Most providers offer automatic scaling to support
demand fluctuations. An organization that has access to such ser-
vices is charged according to compute time. Typically, this results
in lower costs since there is no longer a need to reserve a fixed
amount of capacity that is often underutilized (and sometimes quite
inadequate).

18

Architecting the Future: Cloud Native Applications

Drivers of the Cloud Native
Movement
To see the forces that are behind the cloud native movement, let’s
compare cloud native applications with conventional enterprise apps.

Cloud Native
Applications

Conventional Enterprise
Applications

High predictability. Cloud native
applications are compatible with
a framework that maximizes
resilience with uniform and
predictable behaviors. Highly
automatable cloud infrastructures
attract better, more scalable
application designs.

Inconsistency and inflexibility.
Conventional applications simply
aren’t capable of achieving most of
the benefits of running in a cloud
native platform. These apps require
more effort to build, deploy in
infrequent batches, and only scale
incrementally.

Optimal capacity. A cloud native
platform automates infrastructure
configuration and provisioning. It
dynamically allocates resources
in the deployment—according
to the real-time demands of
hosted applications. Cloud native
architectures scale readily and
exhibit better resource utilization.

Excessive, wasteful over-capacity.
Conventional IT architects build
dedicated, hard-wired infrastructure
that delays app deployment.
Often, the solution is over-sized to
accommodate worst-case capacity
estimates—but with little capability
for scaling to meet future increase
in demand.

Collaborative buildout.
Cloud native architecture and
methodology facilitate better
DevOps, resulting in a closer
collaboration across the team.
It improves delivery speed and
production quality.

Silos. Conventional IT deploys
an over-the-wall release taken
from developers—directly into
production. Organizational
priorities remain higher than
customer value and service. The
result is internal conflict, faulty
delivery, and low team morale.

19

Architecting the Future: Cloud Native Applications

CI/CD. Development teams
release an individual software
update the moment it’s ready.
Such organizations release more
frequently and get user feedback
much more quickly. This is
continuous integration and delivery,
which works best with other
methodologies such as test-driven
development.

Waterfall development. IT teams
release software occasionally,
weeks or months apart. Some
independent, release-ready
components sit waiting for many
weeks. Features that customers
need now are delayed. The
business misses opportunities to
be more competitive and increase
revenue.

Automatic, systemic scalability.
Cloud infrastructure automation at
scale greatly minimizes downtime
that results from human error.
Process automations consistently
apply the same rules across any
deployment scope or size. Cloud
native goes well beyond the ad-hoc
semi-automation that is layered
atop conventional VM-oriented
orchestration.

Limited, manual scaling. Manual
infrastructure requires that human
operators manually configure and
manage the server, storage, and
network configurations. At larger
scales, operators can’t manage
the complexity, so they improperly
diagnose issues and fail to
implement correctly.

Abstraction from the OS.
Cloud native architecture gives
developers a platform that
enables them to abstract away
from underlying infrastructure
dependencies. Rather than
configuring, maintaining, and
patching operating systems, teams
can place their full attention on
building the application.

OS dependency. Conventional
application architecture restricts
developers to building many
hard dependencies among the
application, the hosting OS,
storage, hardware, and backend
services. These constraints limit
the ability to migrate and scale the
application to new infrastructure.

20

Architecting the Future: Cloud Native Applications

High independence. Microservices
architecture enables teams to
build applications that consist
of small, loosely coupled,
independent services. The buildout
of these services maps to smaller
development teams, which have
the independence to create
frequent updates that scale and
recover without affecting other
services.

Heavy dependence. A monolithic
architecture bundles many
disparate functions and services
into a single deployment package.
This establishes many unnecessary
interdependencies among services,
resulting in a lack of flexibility for
development—and deployment.

Rapid recovery. Both the container
runtime and orchestrator
provide dynamic virtualization
for virtual machines, and this
is highly beneficial for hosting
microservices. Orchestration can
dynamically manage container
placement across a VM cluster
to provide elastic scaling and
recovery-restart if there is any
failure.

Sluggish recovery. Simple VM
infrastructure is quite a slow
and inefficient foundation for
microservice applications. This is
because individual VMs take too
long to start or terminate. Also,
VMs require too much overhead—
even when no application code has
been deployed yet.

Benefits of a Cloud Native
Architecture
Cloud native applications are purpose-built for the cloud model.
These applications—built and deployed in a rapid cadence by small,
dedicated feature teams to a platform that offers easy scale-out
and hardware decoupling—provide organizations with greater agility,
resilience, and portability across cloud environments.

Cloud native architecture offers many benefits.

21

Architecting the Future: Cloud Native Applications

Competitive advantage
Cloud native architecture reflects a shift in the view of how comput-
ing architecture should affect business goals. The change in think-
ing has evolved from a focus on merely reducing costs to building
the engines that will grow the business. In this ever-expanding age
of software, organizations that build enduring success will be those
that quickly deliver applications in response to current and antici-
pated customer needs.

Increase in flexibility
While cloud providers offer impressive services at reasonable
prices, most enterprises aren’t yet willing to choose only one infra-
structure. Flexibility is important because it’s risky to depend on a
single vendor. Maintaining flexibility also preserves the ability to
quickly adopt new technologies and enables developers to choose
which tools are the best for their needs.

Enable teams to focus on resilience
Services are likely to suffer when legacy infrastructure fails. In a
cloud native world, teams can focus tightly on building for resil-
ience to failure or sluggish performance. Cloud native architecture
enables system designs that remain online despite any anomalies
that may occur anywhere in the environment.

Align operations with business strategy
By automating IT and delivery operations, companies can become
leaner as its technology teams align more closely with business
priorities. The risk of failure due to human error is mitigated when
all staff can focus on automation that replaces inefficient admin-
istrative tasks. Automated upgrading and maintenance releases
can happen at all layers of the tech stack, which virtually eliminates
downtime and manual intervention from ops experts.

Though cloud native architecture has many benefits, there are also
many challenges that practitioners face. Let’s explore that next.

22

Architecting the Future: Cloud Native Applications

Challenges of Moving
Toward Cloud Native
Computing
A huge mistake that some practitioners make is lifting and shifting
old, on-premise apps directly to the cloud. The attempt to migrate a
monolithic, legacy application onto a cloud infrastructure will not re-
sult in any benefits from cloud native features. It is far better, instead,
to decompose or refactor the legacy app into a cloud native architec-
ture or consider development of new cloud native applications into a
new cloud native environment.

Moving into the future, it will become increasingly important to
dispense with old development paradigms and methodologies. The
waterfall model is effectively outmoded, and classic Agile may be
inadequate. To enjoy the benefits of cloud computing, it is essential
to adopt new, cloud native application development approaches.
These include minimum viable product (MVP) development, rapid
iteration, multivariate testing, and close integration across organi-
zational boundaries by implementing a modern DevOps and CI/CD
methodology.

There are many aspects to cloud native design, development and
deployment. This includes virtualization, containerization, orchestra-
tion, microservices architecture, infrastructure services, automation,
and observability. Embracing each of these will require assimilating
new approaches, and this in turn requires setting aside old habits. To
be successful, it’s important to avoid being overzealous. Proceed at a
steady pace.

23

Architecting the Future: Cloud Native Applications

The Impact on Practitioners
Let’s briefly examine a number of key insights about cloud native
practitioners. All these points significantly influence how practitio-
ners build cloud native architectures that are fully and expressly
designed exclusively for cloud computing.

Cloud native practitioners:

•	 Prefer to transfer platforms, not applications.
•	 Want to have more than one platform option.
•	 Prefer declarative and auto-adjusting approaches—rather than

workflow-based approaches—to deployment and orchestration.
•	 Are compelled to efficiently use cloud resources as many more

systems are being migrated to cloud infrastructures. This con-
tinues to increase operation costs.

•	 Value pragmatic solutions much more highly than full-feature
coverage of cloud platforms and infrastructures.

Considerations for
Practitioners
Distributed computing is not easy. Indeed, it’s complex—if only
for the reason that microservices must communicate. The chal-
lenge facing container technology users is that a container running
a microservice has a network IP address. This address requires
network management. To build cloud native applications upon a
microservices architecture, other containers need the IP address of
a container to communicate with it.

To support networking, each microservice container must provide
network security, a firewall, messaging queuing, load balancing, and
other basic network services. Managing all of this is a major chal-
lenge in the next evolution of cloud native computing. Also, network
elements in a cloud-first architecture are often fragile. Since robust

24

Architecting the Future: Cloud Native Applications

networking is a significant unsolved problem of cloud computing, it’s
essential that cloud native architectures are built to be resilient.

Cloud native architecture is heavily dependent on microservices. And
yet, despite all the excellent benefits, the microservices approach
doesn’t solve all problems. While mitigating many of the issues that
inhibit monolith applications, microservices present some entirely
new challenges. What it offers in agility and speed of development
comes at a cost of increase in operational complexity with the multi-
tude of services to manage. There are many more moving parts than
a comparable monolithic application.

Employing a microservices architecture is likely to increase operat-
ing overhead. An overall deployment burden may require significantly
more resources simply because there are a large number of succes-
sive deployments. The result is likely to be the need for more effort in
creating the infrastructure. Most services need clustering—both for
resilience and failover. A typical system has dozens or more separate
components. As the team continues to add new features, the system
becomes increasingly complex. In contrast to a comparable mono-
lithic application system, a cloud native microservices application
may employ many types of services—each running many instances
processes. It’s vital that you address this additional overhead with
automation and add DevOps staff that possess skills in infrastruc-
ture automation.

How Cloud Native Will
Affect the Entire Ecosystem
Cloud native is not yet a dominant software development paradigm,
but it won’t be long. Look closely. In a recent Cloud Foundry survey,
over 75 percent of about 600 IT decision makers are evaluating or us-
ing Platforms-as-a-Service (PaaS). 72 percent are evaluating or using

25

Architecting the Future: Cloud Native Applications

containers; 46 percent are evaluating or using serverless computing.
More than one-third are employing some combination of all these
technologies. It is in those companies using all three technologies
that cloud native computing is gaining momentum.

We now live in a multi-platform world. So, it is unsurprising that—in
gaining comfort with disparate tools and platforms—technical
decision makers continue to search for a suite of technologies that
work well together. They seek technologies that integrate well with
existing platforms—to address current needs. But they also want the
flexibility to accommodate future needs.

Increasingly, it seems best to meet such challenges by combining
tools or refactoring into cloud native applications. Over half of the
Cloud Foundry respondents report that their companies do both:
building new, cloud native applications and refactoring existing
applications. That’s an increase of nine percentage points from the
same survey results only a few months earlier (in late 2017).

New Cloud Native
Application Development
is on the Rise
How exactly are companies using cloud native technologies? It is
true that many have been using it to refactor legacy applications.
But that is changing. Today, many cloud native practitioners indicate
that they are primarily building new cloud native applications. Fewer
are using the tech to refactor older applications. An increasing
number of companies are developing new cloud native applications
while many companies are deploying on deploy PaaS more broadly.

26

Architecting the Future: Cloud Native Applications

Idea to App in the Shortest
Amount of Time
The biggest advantage of a cloud native architecture? You can go
from idea to app in the shortest amount time. No other app develop-
ment paradigm is more efficient.

Cloud native architecture involves much more than merely getting
your apps to run in a cloud-computing environment. It goes much
deeper, to a major change in how you plan the supporting infrastruc-
ture and design your apps around microservices. And, if you’re going
to make foundational changes to infrastructure, you’ll need a new
toolset that is purpose-built for cloud native operations.

Team dynamics must also change to be smaller, more agile, multi-
functional, and enabled to make decisions that directly affect the
services they manage. All of these efforts combine to create serious
momentum—that leads to much faster releases and more scalable
applications. Yes, the move to cloud native architecture starts with
a significant amount of effort, but it is clearly the way forward in an
increasingly competitive cloud-computing world.

Konghq.com

Kong Inc.
contact@konghq.com

251 Post St, 2nd Floor
San Francisco, CA
94108 USA

