
1

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Secure Your Web,
Mobile Applications
and APIs using the
Kong Gateway
Krishnaraj Subburayalu
Senior Technical Account Manager
Kong Inc.

Technical Guide

2

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Content

API Strategy: Risk and Rewards

Authentication and Authorization using an API Gateway

Kong Authentication and Authorization Capabilities

Secure Applications and APIs with Kong Gateway and an IdP

	 Login	Workflow

	 API	Access	flow

 Keycloak Implementation Details

 Kong Implementation Details

Conclusion

3

4

6

6

7

8

9

9

15

3

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

API Strategy: Risk and Rewards

Today, Application Programming Interfaces (APIs) and microservices
are	the	engines	powering	the	digital	economy.	The	benefits	of	APIs	
and	microservices	in	such	a	rapidly	evolving	world	are	manifold;	at	
a top level, they help accelerate time-to-market, enhance customer
experience	and	increase	the	speed	of	innovation.

However,	the	complexity	and	highly	distributed	nature	of	these	
modern	web	and	mobile	applications	introduce	new	challenges,	
new	attack	vectors	and	require	a	new	approach	to	security.		Without	
proper security, enterprises may accidentally expose sensitive data
or	open	themselves	up	to	cyberattacks,	compliance	violations	and	
other	security	issues.	Enterprises	need	to	have	a	comprehensive	
API management (APIM) strategy for securing their APIs and
microservices.		APIM	is	a	broad	category	that	includes	an	API	
gateway	and	supporting	capabilities	such	as	a	developer	portal,	
security,	observability/analytics,	API	lifecycle	management	and	more.

4

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Authentication and Authorization using
an API Gateway

An	API	gateway	decouples	the	upstream	microservices	from	your	
applications,	providing	centralized	traffic	routing,	integration	and	
security	policy	for	all	API	traffic.	While	this	simplifies	access	for	client	
applications, it also provides a centralized platform for implementing
and enforcing policies, including security policies consistently to all
your	APIs.	

The	API	gateway	can	be	configured	to	enable	security	policies	such	
as	authentication	and	authorization.	Authentication	is	the	verification	
that	somebody	is	who	they	say	they	are.	Beyond	the	basic	login	steps	
of	entering	a	username	and	password,	other	means	of	facilitating	
authentication include OAuth2.0, OpenID Connect, mutual TLS and
token-based	authentication.	Authorization	is	the	determination	of	
what	resources	somebody	is	allowed	to	access.	Open Policy Agent
(OPA),	an	open-source	authorization	engine,	has	become	increasingly	
popular	to	apply	fine-grained	authorization	to	APIs	and	microservices.

A	best	practice	for	authenticating	API	consumers	is	token-based	
authentication	and	authorization,	where	users	or	applications	get	
tokens	from	an	Identity	Provider	(IdP)	and	send	tokens	to	the	service/
API.	The	service/API	validates	the	token	with	the	IdP	and	allows	
access.	These	tokens	are	usually	time-bound	and	expire	within	a	
time	limit	and	are	revocable.	This	identity	tokens	exchange	provides	
greater	security	of	not	sending	passwords/credentials	often	over	the	
network,	reducing	the	risk	of	identity	theft.	The	token-based	approach	
to	authentication	allows	separating	the	issuing	of	tokens	from	their	
validation,	thus	facilitating	the	centralization	of	identity	management.		

With	the	benefit	of	centralized	identity	management,	all	applications	
(web,	mobile,	legacy)	and	upstream	APIs	use	the	same	IdP	to	manage	
API	consumer	identities.	Adopting	a	centralized	identity	management	
strategy	enables	architects	to	implement	consistent	security	best	
practices and standards across the organization as they can easily
define	and	manage	access	controls	and	the	consumers	across	all	the	
systems,	including	their	applications	and	API	gateways.	This	strategy	
also helps developers to focus their efforts on application design and
feature	development,	not	on	writing	redundant	code	to	integrate	the	
IdP	with	each	application.	

https://oauth.net/2/
https://openid.net/connect/
https://en.wikipedia.org/wiki/Mutual_authentication#mTLS
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/

5

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Like centralized identity management, validation of a token and its
authentication	management	can	be	centralized	or	delegated	to	a	
modern	API	gateway	like	Kong.	A	legacy	gateway	approach	would	
use	the	IdP	for	authentication	and	gateway	to	define	authorization	
per	endpoint	to	the	groups	you	want	to	grant	access	to	the	backend	
services.	This	approach	increases	management	overhead	as	
administrators have to dedicatedly manage users and maintain group
memberships	in	the	gateway	to	grant	or	revoke	permissions.	With	
Kong	Gateway, management of keys, tokens and users happen in the
IdP	versus	the	gateway	removing	the	need	to	manage	a	separate	silo	
of	identity.

This	guide	will	walk	through	how	the	Kong	Gateway	can	secure	and	
protect	access	to	applications	and	APIs	in	a	unified	way.

https://konghq.com/kong/
https://konghq.com/kong/

6

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Kong Authentication and Authorization
Capabilities

Kong	Gateway	is	a	lightweight	API	Gateway	that	lets	you	secure,	
manage,	and	extend	APIs	and	microservices	across	hybrid	or	
multi-cloud	infrastructure.	Kong	Gateway	is	available	as	an	on-
premise	or	private	cloud	and	with	Konnect,	our	SaaS	platform.	The	
power	and	flexibility	of	the	Kong	API	gateway	comes	through	its	
plugins	that	integrate	seamlessly	with	your	deployments.	There	are	
multiple	Kong	plugins	available	to	handle	authentication, request	
transformations, rate limiting	and	more.	Check	out	Kong’s Plugins
Hub	for	more	information.

In	this	document,	we	will	be	focusing	on	Kong’s	authentication	
plugin - OpenID Connect (OIDC).	Kong	supports	integration	with	
federated	identity	management	through	the	OIDC	plugin.	The	OIDC	
plugin	supports	several	types	of	grants/credentials	such	as	opaque	
access tokens, refresh tokens, authorization code, session cookies,
client	credentials	and	more.	It	also	supports	several	OIDC	identity	
management providers such as Okta, Keycloak, PingFederate, Azure
Active	Directory,	Microsoft	Active	Directory	and	more.

Secure Applications and APIs with
Kong Gateway and an IdP

The	Kong	Gateway	authenticates	the	applications	and	users	using	
the	IdP	and	maintains	the	session.	The	best	practice	is	that	access	
tokens	and	refresh	tokens	are	never	exposed	to	browsers	but	only	
the	session	cookies	that	Kong	Gateway	generates.	Sometimes	
mobile	applications	cannot	handle	the	session	cookies	and	
make	use	of	refresh	tokens	directly.	These	refresh	tokens	(with	
offline	access	scope)	could	be	short	or	long-lived	based	on	the	
organization's	security	requirement.	The	session	validity	time	is	
configurable	both	in	the	IdP	and	Kong	Gateway.	

Authentication	takes	place	in	two	distinct	phases:

1.	 Login Workflow:	Used	by	the	applications	to	authenticate	the	
end-users.

2.	 API Access flow:	Second	phase	of	the	flow,	where	applications	
consume	the	API	to	retrieve/update	relevant	information.

https://konghq.com/kong/
https://konghq.com/kong-konnect/
https://docs.konghq.com/hub/#authentication
https://docs.konghq.com/hub/kong-inc/request-transformer/
https://docs.konghq.com/hub/kong-inc/request-transformer/
https://konghq.com/blog/kong-gateway-rate-limiting/
https://docs.konghq.com/hub/
https://docs.konghq.com/hub/
https://docs.konghq.com/hub/kong-inc/openid-connect/

7

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Login Workflow

In	this	workflow,	the	application	delegates	user	authentication	to	
Kong	Gateway.	The	below	diagram	describes	the	login	workflow.

Diagram 1: Login Workflow

Login	Workflow

1.	 The	user	goes	to	the	application’s	login	page,	which	is	a	proxy	
endpoint	hosted	in	the	Kong	Gateway.

2.	 The	Kong	Gateway	redirects	to	the	Keycloak	IdP.
3.	 IdP	redirects	the	user	to	its	own	login	page,	where	user	submit	

their	credentials.
4.	 The IdP validates the user credentials and sends an

authorization	code	which	is	used	by	Kong	Gateway	to	get	the	
access	tokens.	The	gateway	uses	an	“offline	access”	scope	to	
get	refresh	token	along	with	access	tokens.

5.	 Kong	Gateway	creates	a	session	cookie	and	stores	it	in	the	
Redis	cache.

6.	 Kong	Gateway	responds	to	applications	with	the	session	cookie	
or	refresh	token	based	on	the	configuration.	The	application	
will	then	use	the	session	cookie	or	refresh	token	to	access	the	
APIs	as	described	in	the	API	access	flow	below.

8

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

API Access flow

In	this	workflow,	the	application	delegates	user	authentication	to	
Kong	Gateway.	The	below	diagram	describes	the	login	workflow.

API	Access	Workflow

Diagram 2: API Access Workflow

1.	 The application invokes the API endpoint hosted in the Kong
Gateway,	passing	the	session	cookie	or	refresh	token	in	the	header.	
If a session cookie or refresh token is not sent in the header, the
gateway	redirects	the	user	for	authentication	as	described	in	the	
login	flow	above.

2.	 Kong	Gateway	validates	if	a	session	cookie	exists	in	the	Redis	cache.
3.	 Kong	Gateway	retrieves	the	refresh	token	from	the	cache	or	from	

the	header	and	requests	an	access	token	from	IdP	using	the	
refresh	token.

4.	 The	IdP	exchanges	the	refresh	token	for	an	access	token.	Kong	
Gateway	extracts	the	claim	from	the	access	token	and	validates	
(using consumer, roles or groups mapping) if the application has
access	to	the	upstream	API.

5.	 Kong	Gateway	invokes	the	upstream	API	passing	the	token	in	
the	header.	

6.	 Upstream	API	re-validates	the	access	token	with	the	IdP.	This	step	
is	not	required	in	all	cases	as	the	token	has	already	been	validated	
by	the	Kong	Gateway,	but	some	upstream	applications	require	
additional	validation.	

7.	 Upstream	API	sends	the	response	back	to	the	Kong	Gateway.
8.	 The	Kong	Gateway	sends	the	response	back	to	the	application.

9

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Keycloak Implementation Details

• The	application	users	and	associated	groups	are	onboarded	to	
Keycloak.	This	group	information	is	sent	as	part	of	the	access	
token	claims.

• OAuth	defines	two	types	of	clients,	confidential	clients	and	
public	clients.	Confidential	clients	are	applications	that	are	
able	to	securely	authenticate	with	the	authorization	server,	for	
example	being	able	to	keep	their	registered	client	secret	safe.	
Public	clients	are	unable	to	use	registered	client	secrets,	such	
as	applications	running	in	a	browser	or	on	a	mobile	device.	In	
our	case,	Kong	will	be	acting	as	the	frontend	integrating	with	
the	IdP,	so	both	mobile	and	web	applications	can	be	created	
as	“confidential”	clients.	But	if	these	were	already	existing,	
they	would	have	been	created	as	“public”	clients	for	mobile	
applications	and	“confidential”	clients	for	web	applications.

• Make sure appropriate users are added to these
applications’	access.	

Kong Implementation Details

To	support	web,	mobile	and	API	authentication,	we	will	create	four	
Kong proxy endpoints (routes and services) and the OIDC plugins
applied	at	each	route	level.	The	web	browser	automatically	manages	
the	session	cookie,	but	the	application	must	manage	the	refresh	token.

Following	are	the	required	parameters	for	the	OIDC	plugin	to	support	
our	requirement:	

1.	 Authentication	methods	(grants	and	credentials):	The	
plugin	supports	several	authentication	methods,	but	for	this	
requirement,	we	would	be	using	“session”,	“authorization_code”	
and	“refresh_token.”

2.	 Scope:	Scope	of	the	access,	for	example,	openid,	offline_
access,	profile	etc.

3.	 OIDC	issuer:	The	discovery	endpoint	of	the	IdP,	for	example:	
https://keycloak.iam.svc.cluster.local/auth/realms/master

4.	 Application	client	id/client	secret:	Client	application’s	id	and	
secret.	For	public	access	clients,	there	is	no	secret.

5.	 Consumer	claim:	Claim	attribute	from	which	application	is	mapped.	
6.	 Session	cookie	lifetime:	The	session	cookie	lifetime	in	seconds.	

10

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

7.	 Session	storage:	Session	cookie	storage	medium	-	in	memory,	
database	or	redis.

8.	 Session	secret:	Session	cookie	encryption	key,	so	session	
cookie	is	not	stored	in	plain	text.

9.	 Login	action:	Action	to	be	performed	after	successful	login	(or	
validation)	-	options	are:	

a.	 Redirect:	forward	the	request	to	some	endpoint	
b.	 Response:	send	the	response	back	to	the	client	or	
c.	 Upstream:	forward	to	upstream	service	configured.

10.	 Client	authentication:	Indicator	on	if	authentication	is	required	
when	Kong	connects	to	IdP	for	token	introspection	or	for	
getting	access	tokens.	

11.	 Upstream	headers:	Headers	to	be	passed	to	upstream	services.
12.	 Unauthorized	redirect:	If	authentication	fails	or	the	session	has	

expired,	this	parameter	provides	the	URL/endpoint	where	the	
user	can	re-login.

13.	 Downstream	headers:	Headers	to	be	passed	to	the	client	or	
consumer	applications.

14.	 Configure Redis cache for session storage management,
supporting cluster and externalizing the session storage

Please refer to the OIDC documentation for information on
additional	parameters.	

For	your	convenience,	attached	below	is	an	example	declarative	YAML
configuration	which	you	can	modify	for	your	environment.	Replace	the	
issuer, client id, client secret, login and unauthorized URI(s), and Redis
cache	configuration	to	your	specific	instance	values.

_format_version: "1.1"
_workspace: DemoAppSecurity
services:
- connect_timeout: 60000
 host: mockbin.org
 name: DemoAPI
 port: 443
 protocol: https
 read_timeout: 60000
 retries: 5
 write_timeout: 60000
 routes:
 - name: MobileAPI
 paths:
 - /m/api/*
 path_handling: v0

https://docs.konghq.com/hub/kong-inc/openid-connect/
https://github.com/ksubburayalu/kong-oidc/blob/main/kong.yaml
https://github.com/ksubburayalu/kong-oidc/blob/main/kong.yaml

11

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - refresh_token
 client_auth:
 - none
 client_id:
 - ChangeClientId
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 refresh_token_param_name: refresh_token
 session_cookie_lifetime: 36000
 session_cookie_renew: 6000
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://mobile.app.com/unauthorized
 upstream_access_token_header:
authorization:bearer
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
 - name: WebAPI
 paths:
 - /web/api/*
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - session
 client_id:
 - ChangeClientID
 client_secret:
 - ChangeClientSecret

12

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 scopes:
 - openid
 session_cookie_lifetime: 3600
 session_cookie_renew: 600
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://example.web.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
routes:
- name: MobileLogin
 paths:
 - /mlogin
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - session
 - authorization_code
 client_auth:
 - none
 client_id:
 - ChangeClientId
 client_secret: null
 consumer_by:
 - username
 - custom_id
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 login_action: redirect
 login_methods:
 - authorization_code
 login_redirect_mode: query
 login_redirect_uri:
 - https://mobile.app.com/somepage
 login_tokens:
 - id_token
 - refresh_token

13

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 logout_methods:
 - POST
 - DELETE
 scopes:
 - openid
 - offline_access
 scopes_claim:
 - scope
 session_cookie_lifetime: 36000
 session_cookie_renew: 6000
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://mobile.app.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
- name: WebLogin
 paths:
 - /wlogin
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - authorization_code
 - session
 client_id:
 - ChangeClientId
 client_secret:
 - ChangeClientSecret
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 login_action: redirect
 login_methods:
 - authorization_code
 login_redirect_mode: fragment
 login_redirect_uri:
 - https://example.web.com/landingpage
 scopes:
 - openid
 scopes_claim:
 - scope
 session_cookie_lifetime: 3600

14

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 session_cookie_renew: 600
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://example.web.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https

Following	are	the	sequence	of	events	that	occur	when	accessing	
APIs	from	either	web	or	mobile	application

Diagram 3: Sequence of events that occur when accessing APIs from an application

15

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Conclusion

In	this	document,	we	saw	how	the	Kong	Gateway	can	be	used	to	
protect	web/mobile	applications	and	APIs	through	a	federated	IdP.		
With	Kong,	you	can	leverage	the	IdP	for	both	authentication	and	
authorization	without	having	to	manage	users	or	groups	in	Kong,	
giving	you	the	ability	to	leverage	a	single	centralized	IdP	to	control	
access	to	upstream	APIs.	This	helps	in	eliminating	the	additional	
overhead	of	writing	redundant	code	to	integrate	the	IdP	with	each	
application	while	ensuring	consistent	security	best	practices	and	
standards	are	followed	across	the	organization.	

To	learn	more	about	the	OIDC	plugin	configuration	parameters,	
refer to the OpenID Connect documentation.	For	step-by-step	OIDC	
installation	refer	to	our	“How	to	Secure	APIs	and	Services	Using	
OpenID Connect”	blog	post.

https://docs.konghq.com/hub/kong-inc/openid-connect/
https://konghq.com/blog/how-to-secure-apis-and-services-using-openid-connect/
https://konghq.com/blog/how-to-secure-apis-and-services-using-openid-connect/

Konghq.com

Kong Inc.
contact@konghq.com

150	Spear	Street,	Suite	1600
San	Francisco,	CA	94105
USA

	API Strategy: Risk and Rewards
	Authentication and Authorization using an API Gateway
	Kong Authentication and Authorization Capabilities
	Secure Applications and APIs with Kong Gateway and an IdP
	Login Workflow
	API Access flow
	Keycloak Implementation Details
	Kong Implementation Details
	Conclusion

	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 7:
	Button 8:
	Button 9:
	Button 6:
	Button 10:
	Button 16:

