Blog
  • AI Gateway
  • AI Security
  • AIOps
  • API Security
  • API Gateway
|
    • API Management
    • API Development
    • API Design
    • Automation
    • Service Mesh
    • Insomnia
    • View All Blogs
  1. Home
  2. Blog
  3. Engineering
  4. Observability for Your Kubernetes Microservices Using Kuma and Prometheus
Engineering
April 20, 2020
4 min read

Observability for Your Kubernetes Microservices Using Kuma and Prometheus

Kevin Chen
Topics
KubernetesKumaObservability
Share on Social

More on this topic

Videos

Work Smarter, Not Harder: Using ML to Observe Your Kuma API Metrics

Videos

Benchmarking Observable Kubernetes Deployments

See Kong in action

Accelerate deployments, reduce vulnerabilities, and gain real-time visibility. 

Get a Demo

A year ago, Harry Bagdi wrote an amazingly helpful blog post on observability for microservices. And by comparing titles, it becomes obvious that my blog post draws inspiration from his work. To be honest, that statement on drawing inspiration from Harry extends well beyond this one blog post - but enough about that magnificent man and more on why I chose to revisit his blog.

When he published it, our company was doing an amazing job at one thing: API gateways. So naturally, the blog post only featured leveraging the Prometheus monitoring stack in conjunction with Kong Gateway. But to quote Bob Dylan, "the times they are a-changin [and sometimes an API gateway is just not enough]". So, we released Kuma, an open source service mesh to work in conjunction with Kong Gateway. How does this change observability for the microservices in our Kubernetes cluster? Well, let me show you.

Prerequisites

The first thing to do is to set up Kuma and Kong. But why reinvent the wheel when my previous blog post already covered exactly how to do this. Follow the steps here to set up Kong and Kuma in a Kubernetes cluster.

Install Prometheus Monitoring Stack

Once the prerequisite cluster is set up, getting Prometheus monitoring stack setup is a breeze. Just run the following `kumactl install [..]` command and it will deploy the stack. This is the same `kumactl` binary we used in the prerequisite step. However, if you do not have it set up, you can download it on Kuma's installation page.

To check if everything has been deployed, check the `kuma-metrics` namespace:

Enable Metrics on Mesh

Once the pods are all up and running, we need to edit the Kuma mesh object to include the `metrics: prometheus` section you see below. It is not included by default, so you can edit the mesh object using `kubectl` like so:

Accessing Grafana Dashboards

We can visualize our metrics with Kuma's prebuilt Grafana dashboards. And the best part is that Grafana was also installed alongside the Prometheus stack, so if you port-forward the Grafana server pod in `kuma-metrics` namespace, you will see all your metrics:

Next step is to visit the Grafana dashboard (http://localhost:3000) to query the metrics that Prometheus is scraping from Envoy sidecar proxies within the mesh. If you are prompted to log in, just use `admin` for both the username and password.

There will be three Kuma dashboards:

  • Kuma Mesh: High level overview of the entire service mesh
  • Kuma Dataplane: In-depth metrics on a particular Envoy dataplane
  • Kuma Service to Service: Metrics on connection/traffic between two services

But we can do better…by stealing more ideas from Harry's blog. In the remainder of this tutorial, I will explain how you can extend the Prometheus monitoring stack we just deployed to work in conjunction with Kong.

To start, while we are still on Grafana, let's add the official Kong dashboard to our Grafana server. Visit this import page in Grafana (http://localhost:3000/dashboard/import) to import a new dashboard:

On this page, you will enter the Kong Grafana dashboard ID `7424` into the top field. The page will automatically redirect you to the screenshot page below if you entered the ID correctly:

Here, you need to select the Prometheus data source. The drop down should only have one option named "Prometheus," so be sure to just select that. Click the green "Import" button when you are done. But before we go explore that new dashboard we created, we need to set up the Prometheus plugin on the Kong API gateway.

Enabling Prometheus Plugins on Kong Ingress Controller

We need the Prometheus plugin to expose metrics related to Kong and proxied upstream services in Prometheus exposition format. But you may ask, "wait, didn't we just set up Prometheus by enabling the metrics option on the entire Kuma mesh? And if Kong sits within this mesh, why do we need an additional Prometheus plugin?" I know it may seem redundant, but let me explain. When enabling the metrics option on the mesh, Prometheus only has access to metrics exposed by the data planes (Envoy sidecar proxies) that sit alongside the services in the mesh, not from the actual services. So, Kong Gateway has a lot more metrics available that we can gain insight into if we can reuse the same Prometheus server.

To do so, it really is quite simple. We will create a Custom Resource in Kubernetes to enable the Prometheus plugin in Kong. This configures Kong to collect metrics for all requests proxies via Kong and expose them to Prometheus.

Execute the following to enable the Prometheus plugin for all requests:

Export the PROXY_IP once again since we'll be using it to generate some consistent traffic.

This will be the same PROXY_IP step we used in the prerequisite blog post. If nothing shows up when you `echo $PROXY_IP`, you will need to revisit the prerequisite and make sure Kong is set up correctly within your mesh. But if you can access the application via the PROXY_IP, run this loop to throw traffic into our mesh:

"Show Me the Money Metrics!"

Hell! It’s a family motto. Say it with me, Jerry Harry. SHOW. ME. THE. METRICS. Go back to the Kong Grafana dashboard and watch those sweet metrics trickle in:

You now have Kuma and Kong metrics using one Prometheus monitoring stack. That's all for this blog. Thanks, Harry, for the idea! And thank you for following along. Let me know what you would like to see next by tweeting at me at @devadvocado or emailing me at kevin.chen@konghq.com. Until then, be safe and stay home!

Topics
KubernetesKumaObservability
Share on Social
Kevin Chen

Recommended posts

Kong Mesh 2.12: SPIFFE/SPIRE Support and Consistent XDS Resource Names

Kong Logo
Product ReleasesSeptember 18, 2025

We're very excited to announce Kong Mesh 2.12 to the world! Kong Mesh 2.12 delivers two very important features: SPIFFE / SPIRE support, which provides enterprise-class workload identity and trust models for your mesh, as well as a consistent Kuma R

Justin Davies

Debugging Applications in Production with Service Mesh

Kong Logo
EngineeringNovember 30, 2022

As an application developer, have you ever had to troubleshoot an issue that only happens in production? Bugs can occur when your application gets released into the wild, and they can be extremely difficult to debug when you cannot reproduce without

Damon Sorrentino

Getting Started With Kong Istio Gateway on Kubernetes With Kiali for Observability 

Kong Logo
EngineeringOctober 29, 2021

Have you ever found yourself in a situation where all your service mesh services are running in Kubernetes, and now you need to expose them to the outside world securely and reliably? Ingress management is essential for your configuration and ope

Viktor Gamov

Automate Service Mesh Observability With Kuma

Kong Logo
EngineeringApril 20, 2021

The more services you have running across different clouds and Kubernetes clusters, the harder it is to ensure that you have a central place to collect service mesh observability metrics. That's one of the reasons we created Kuma , an open source

Marco Palladino

Observability For Your Microservices Using Kong and Kubernetes

Kong Logo
EngineeringFebruary 14, 2019

Read the latest version: APM With Prometheus and Grafana on Kubernetes Ingress Archived post below. In the modern SaaS world, observability is key to running software reliability, managing risks and deriving business value out of the code that you'

Harry Bagdi

AI Voice Agents with Kong AI Gateway and Cerebras

Kong Logo
EngineeringNovember 24, 2025

Kong Gateway is an API gateway and a core component of the Kong Konnect platform . Built on a plugin-based extensibility model, it centralizes essential functions such as proxying, routing, load balancing, and health checking, efficiently manag

Claudio Acquaviva

Farewell Ingress NGINX: Explore a Better Path Forward with Kong

Kong Logo
EngineeringNovember 14, 2025

"To prioritize the safety and security of the ecosystem, Kubernetes SIG Network and the Security Response Committee are announcing the upcoming retirement of Ingress NGINX . Best-effort maintenance will continue until March 2026. Afterward, there w

Justin Davies

Ready to see Kong in action?

Get a personalized walkthrough of Kong's platform tailored to your architecture, use cases, and scale requirements.

Get a Demo
Powering the API world

Increase developer productivity, security, and performance at scale with the unified platform for API management, AI gateways, service mesh, and ingress controller.

Sign up for Kong newsletter

    • Platform
    • Kong Konnect
    • Kong Gateway
    • Kong AI Gateway
    • Kong Insomnia
    • Developer Portal
    • Gateway Manager
    • Cloud Gateway
    • Get a Demo
    • Explore More
    • Open Banking API Solutions
    • API Governance Solutions
    • Istio API Gateway Integration
    • Kubernetes API Management
    • API Gateway: Build vs Buy
    • Kong vs Postman
    • Kong vs MuleSoft
    • Kong vs Apigee
    • Documentation
    • Kong Konnect Docs
    • Kong Gateway Docs
    • Kong Mesh Docs
    • Kong AI Gateway
    • Kong Insomnia Docs
    • Kong Plugin Hub
    • Open Source
    • Kong Gateway
    • Kuma
    • Insomnia
    • Kong Community
    • Company
    • About Kong
    • Customers
    • Careers
    • Press
    • Events
    • Contact
    • Pricing
  • Terms
  • Privacy
  • Trust and Compliance
  • © Kong Inc. 2025